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ABSTRACT

Over the past 20 years, there has been a significant increase in publication in complex 
network analysis research, especially in community detection. Many methods were 
proposed to identify community structure. Each community identification algorithm 
has strengths and weaknesses due to the complexity of information. Among them, the 
optimisation methods are widely focused on. This paper focuses on an empirical study of 
two community detection algorithms based on agglomerative techniques using modularity 
metric: Louvain and Leiden. In this regard, the Louvain algorithm has been shown to 
produce a bad connection in the community and disconnected when executed iteratively. 
Therefore, the Leiden algorithm is designed to successively resolve the weaknesses. 
Performance comparisons between the two and their concept were summarised in 

detail, as well as the step-by-step learning 
process of the state-of-the-art algorithms. 
This study is important and beneficial 
to the future study of interdisciplinary 
data sciences of network analysis. First, 
it demonstrates that the Leiden method 
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outperformed the Louvain algorithm in terms of modularity metric and running time. 
Second, the paper displays the use of these two algorithms on synthetic and real networks. 
The experiment was successful as it identified better performance, and future work is 
required to confirm and validate these findings.

Keywords: Community detection, Leiden, Louvain, modularity, network structure 

INTRODUCTION 

Systems in many real-world data can be modelled as a complex network. Based on Scopus 
online database, the number of research studies about network analysis is projected to grow 
by more than 148 873 publications from 1994 until now. Scopus is a large database of peer-
reviewed literature and the citation and publication index owned by Elsevier, including 
journals, books, and conference proceedings. The concept of community detection is crucial 
to both graph theory and social network analysis. A network is composed of nodes as objects, 
as well as edges as the interaction or relation between the objects in a particular community. 
Community detection is one of the methods used to represent information in a complex real-
world structural network. A community is described as a set of nodes that share common 
properties such as affiliations, similar interests, and similar information. Community detection 
is used to identify low-density communities with a high density within edges.

There are several different social network analysis techniques to characterise the structural 
network, investigate the relationship, or determine the social network group structure, 
depending on the application of the communities. In that sense, several studies have provided 
recommendations concerning algorithm selection using criteria such as network parameters, 
computation time, or overlap with a simulated community structure. 

Generally, community detection can be categorised into global and local scopes. Global 
scope is dependent on prior knowledge of the entire network. Various perspectives have 
been developed to detect the community structure, such as hierarchical, spectral, and fuzzy 
clustering, as well as optimisation methods. Among them, the optimisation methods are 
widely focused on (Cheng et al., 2019). These class methods define community detection as 
the optimisation problem of an objective function. 

For the performance testing of each community detection algorithm, it is preferable to 
run on networks that can be modified regarding the mesoscopic characteristics, including 
the distribution of degrees, the extent of local clustering, and the modularity of the global 
structure (LaRock et al., 2020). First, the degree distribution is important in determining 
whether learning is feasible or beneficial. Distributions of degree in complex networks can 
be characterised by two simplified extremes, which are homogenous and heterogeneous 
distributions. Second is the extension of the local clustering coefficient. It measures the 
degree of connectivity between two nodes and finds the important node. 
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The third is modularity, also known as quality function and denoted as Q (Newman, 2006; 
Newman & Girvan, 2004). The modularity function can be used to determine a community’s 
strength. In this way, modularity measures can be applied to community detection to find the 
density of connections within communities rather than between communities (Blondel et al., 
2008). Several community detection algorithms utilise modularity as an objective function 
to be maximised (Yuan & Liu, 2021). Modularity can be leveraged only in undirected, static, 
and non-overlapping networks. It is also used to denote the dendrogram’s line and mark the 
conclusion of the algorithm that shows the values of effective partitions.

This paper forms a relationship between degree distribution and modularity metric from 
these three properties. This paper mainly evaluates Louvain and Leiden, two community 
detection algorithms based on agglomerative methods using modularity metric as an objective 
function. Numerous graph analysis software uses the well-known Louvain algorithm. Despite 
the fact that both techniques use similar steps at the start of the two phases, the Leiden 
algorithm performs better than Louvain because of improvements made during the refining 
phase before the identification of the community.

The main contributions of this paper can be summarised as follows:
• Through experimental comparison, this study demonstrated that Leiden is a superior 

algorithm to Louvain concerning performance comparison by focusing on the 
modularity metric and running time. 

• This paper displays the use of these two algorithms on synthetic and real networks.
Consequently, this would aid other users in selecting the best community detection 

algorithm based on the results that showed the Leiden approach is the latest and faster than 
the Louvain algorithm.

LITERATURE REVIEW

Hierarchical Clustering

In the past 20 years, several community detection techniques have been created and 
implemented (Gilad & Sharan, 2023). One of the approaches in community analytics 
methods is hierarchical clustering. Hierarchical clustering can be classified into divisive 
and agglomerative methods (Newman & Girvan, 2004). The divisive method uses a split-
process mechanism and contains two community detection algorithms: Girvan-Newman 
and the leading eigenvector algorithm. Meanwhile, the agglomerative method uses a 
merge process consisting of four community detection algorithms: fast greedy, walktrap, 
Louvain, and Leiden. 

Each of the past research initiatives analysed the network’s content from a unique 
perspective and then used this analysis to discover communities by considering the 
topological information of a network (Ullah et al., 2022). Recent trends in the practical 
application of community detection in network structure especially using the Louvain 
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and Leiden algorithm, are in healthcare (Chatterjee & Sanjeev, 2023; Evans et al., 2022; 
Jin et al., 2020; Kabir et al., 2019; Kramer et al., 2020; Nallusamy & Easwarakumar, 
2023; Nicolini et al., 2017; Rahiminejad et al., 2019), social network (Chessa et al., 2023; 
Irsyad & Rakhmawati, 2019; Li et al., 2023; Park & Kwon, 2022; Torene et al., 2022), 
telecommunication (Ding et al., 2022; Zu et al., 2021), economic (Han et al., 2018; Wang 
et al., 2022), intelligent (Karyotis et al., 2018; Singhal et al., 2020) and nature (Peeples & 
Bischoff, 2023; Wang & Wang, 2022; Xie et al., 2022). 

Table 1
Notations used in this paper

Notation Description
E The set of edges
G The whole network
m The number of edges
n The number of nodes
Q The modularity
t The running time in seconds
V The set of nodes

MATERIALS AND METHOD

Preliminary

We formulate some preliminaries and 
notations used in the proposed method in the 
form of definitions listed in Table 1.

The definition of modularity, Q, is 
represented in Equation 1 as follows:

( )1
2 2

i j
ij i j

ij

k k
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In G = (V,E), an undirected and unweighted network, the quality function of community 
structure can be measured by modularity metric, Q where Aij represent the adjacency matrix, 
ki and kj is the degree of node i and j, respectively, Ci and Cj are the community of node i 
and j, respectively, and ( )δ   represents Kronecker function as in Equation 2. 
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The purpose of the Kronecker-delta function is to ensure that if nodes i  and j are in 
different communities, then Q is zero. Otherwise, the value of 1, provided that both node 
i and j belong to the same community Ci and Cj.

Framework

After introducing the key notations and description, we begin to run the experiment based 
on this framework in Figure 1, which summarises the complete flow of the experiment.

Network datasets from synthetics and real-world networks were collected in the first 
stage. An artificial network termed Lancichinetti-Fortunato-Radicchi (LFR) was adopted 
as a benchmark for the synthetic type with three different network sizes consisting of 
small, medium, and large. Similar network sizes were also applied for the six real-world 
networks utilised. 
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The three network sizes are used to 
evaluate the performance algorithm, and 
the network parameters were set up earlier 
based on the benchmark network. The small 
size contains less than one thousand nodes, 
the medium size network contains between 
one thousand and ten thousand nodes, and 
the large size is more than that. 

The input dataset was read as an edge 
list for the next step and transformed into 
adjacency matrices using Python. Three 
popular graph libraries with Python bindings, 
namely cdlib, NetworkX and igraph, were 
used for performance comparison between 
the two techniques. Cdlib is a powerful 
Python package that allows the extraction, 
comparison, and evaluation of communities 
from complex networks. NetworkX was 
implemented using pure Python methods, 
whereas igraph was run using C language. In 
this paper, the Louvain and Leiden algorithms 
were applied using the three libraries and 
tested in the same network. The details of 
two representative algorithms have been 
explained in comparison to the algorithm.

For the final step, both algorithms were 
evaluated through modularity metrics, and 
the running time was set up in unit seconds. 

Comparison of Algorithms

A hierarchical clustering strategy can rapidly 
generate highly modular communities in a 

Start

Data collection and 
cleaning

Read Input Data
Edge list file (csv/txt)
Unsupervised data 

(source, target)

Recommendation:
Better and Fast algorithm

6 real-world 
network (small, 
medium, large)

Generate synthetic 
network (LFR network-
small, medium, large)

Transform Edge list 
to adjacency Matrix

Create network using network in 
phthon

g = nx.Graph()

Detect the community using 
Louvain and Louvain algorithm

Evaluate the community using 
modularity (Q) and time 
performance (second)

End

Figure 1. Workflow of the experiment

large network. There are two phases in the Louvain algorithm (Blondel et al., 2008). The 
first stage is the local moving of nodes for modularity optimisation, while the second stage 
is the community merging or network aggregation process. A static network is required for 
Louvain to produce an efficient output. In a large network, this approach, which belongs to 
the hierarchical clustering category, may quickly create communities with a high degree 
of modularity.
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Meanwhile, the Leiden algorithm enhances the Louvain algorithm (Traag et al., 2019). 
Despite the fact that it is more complicated than its counterpart, this algorithm is able to 
derive a faster and more precise computation time. As opposed to Louvain’s, the Leiden 
algorithm comprises three phases, with the modularity optimisation process being the first, 
followed by partition refinement, and the community aggregation process in the last step. 
In addition, this algorithm works well on large-scale, medium, and small networks. Figure 
2 compares hierarchical clustering, and Figure 3 shows the infographic of the Louvain 
and Leiden algorithms.

Figure 2. Hierarchical clustering (Anuar et al., 2021)

Figure 3. Infographic of: (a) Louvain; and (b) Leiden algorithms method (Traag et al., 2019)
(a) (b) 
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EXPERIMENTS

Experimental Environment

All the algorithms were executed on a device with installed Python running on an Intel 
Core i7-7700 CPU @ 2.8GHz and 24GB of RAM.

Experimental Data

Many researchers have proposed their community detection and experiment on various 
types of networks as a benchmark. (Chunaev, 2020) The small dataset consists of less than 
103 nodes, the medium dataset consists of nodes between 103 and 105, while the large dataset 
consists of nodes of more than 105. (Chunaev, 2020) For convenience, the datasets were 
distinguished by size, namely, small, medium, and large. Louvain and Leiden’s algorithms 
were tested on a range of synthetic networks, as well as six real-world datasets.

Synthetic Networks

To evaluate the performance of two community detection algorithms, Louvain and Leiden, 
we generated a synthetics network with a known ground truth called extended LFR. The 
details are shown in Table 2. Three artificial network data sets were constructed. The 
difference between the six artificial network data sets lies in the blend factor number of 
nodes, representing the small, medium, and large networks.

LFR network as a benchmark of synthetic network can be built very quickly, and the 
complexity of the construction algorithms is linear in the number of links of the graph. 
So, one can perform tests on very large systems, provided the study method is fast enough 
to analyse them.

Table 2
Synthetic network used in experiment

LFR Network
Parameters

n τ1 τ2 cmin k μ
Small 500 3 1.5 20 5 0.1-1.0

Medium 7000 3 1.5 20 5 0.1-1.0
Large 10000 3 1.5 20 5 0.1-1.0

Real-world Networks

We also performed experiments on six real-world networks. The dataset retrieved from 
the UCI machine learning library is detailed in Table 3.

Real-world datasets can include complex networks from sociology, communication, 
biology, and transportation domains. Fundamentally, real-world or empirical networks are 
unknown ground truths. The description of each network is provided as follows:
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1. Zachary network: A social network of connections formed by 34 karate club 
members of a US university’s karate club in the 1970s.

2. Democratic National Committee (DNC): The official administration body of 
the United States Democratic Party. It undirected a network of individuals who 
received the same email in 2016. 

3. Cora: A seven-class network of scientific publications in the citation network. 
The classes include genetic algorithms, case-based reasoning, neural networks, 
probabilistic techniques, rule learning, reinforcement learning, and theory.

4. Wikipedia: A Wikipedia voting for the promotion of administrator ship. A to B 
directed edge indicates that user A voted on B to become a Wikipedia administrator. 

5. Enron email: An undirected network of communication emails sent around 500,000 
emails from the Federal Energy Regulatory Commission.

6. Amazon: A network of products derived from the process of crawling the Amazon 
website. It is based on the feature ‘Customers Who Bought This Item Also Bought’ 
on the Amazon website.

Table 3
The real-world network features

Size datasets Network Domain
Feature

Nodes (n) Edges (m)

Small
Zachary Social network 34 78
DNC Communication network 906 12100

Medium
Cora Publication network 2,708 5,429
Wikipedia Wiki-vote network 7,115 103689

Large
Email Enron Communication network 36,692 183,831
Amazon Product network 334,863 925,872

RESULTS AND DISCUSSION

The result elaboration is divided into performance evaluation index and statistical analysis.

Performance Evaluation Index

The detailed performance result of Louvain and Leiden algorithms is explained for the 36 
datasets of networks with different nodes and mixing parameters in the form of modularity 
metrics and running time. First, tests are performed on well-known synthetic networks.

Synthetic Networks

A set of networks was created by the LFR benchmark (Lancichinetti & Fortunato, 2009). 
LFR generation consists of network size N, the mixing parameters, the average degree k, 



Comparison of Community Detection Algorithm Based on Modularity

PREPRINT

the maximum degree, the minimum, and the maximum community size. Generally, the 
degrees of the nodes are governed by power laws with an exponent of τ1=3 and τ2=1.5, 
respectively. The parameters of LFR networks are set as shown in Table 2. Figure 4 shows 
the detection effect in the LFR networks with n = 500, 7000, and 10000.

The modularity values range between 0 and 1 (Needham & Hodler, 2021). Larger 
values indicate better communities, while a modularity value of less than 1 signifies that 
each node is a community. However,  the optimal partition indicates 0.41 and above, which 
is the best value of partition using modularity metrics.

By comparison, both the Louvain and Leiden algorithms have good performance at 
the value of μ from 0.1 to 1.0 in terms of modularity. However, in terms of running time, 

Figure 4. Results on LFR benchmark networks. Small, medium, and big notation indicates that the community 
sizes are in the range mixing parameter μ [0.1, 1.0] 
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Leiden performed well and fast. With increasing of μ, the Leiden algorithm has stable 
performance in the networks with k = 5 and cmin = 20. The algorithm has no significant 
difference in the networks with varying numbers of nodes. It indicates that the Leiden 
algorithm is stable in dense networks and is unaffected by the number of nodes and the 
scale of mixing parameters. However, when μ < 0.4 with a big network scale, the value of 
modularity increases in the network with k = 5 and cmin = 20. When μ > 0.4, the modularity 
value is suddenly stable at the optimal range [0.5, 0.6] for both the Louvain and Leiden 
algorithms.  

When the mixing parameter is increased, each node is more closely connected to a local 
central node. This situation allows too many nodes to be merged into the same community, 
rapidly deteriorating the detection effect.

Real-world Networks

The selected networks include Zachary Karate Club, DNC, Cora, Wikipedia, email Enron 
and Amazon, which are in Table 3. Figures 5 to 7 show the detection effect in real networks 
with small, medium, and large sizes.

By comparison, both the Louvain and Leiden algorithms perform well in real-world 
networks in terms of modularity. However, in terms of running time, Leiden still performed 

Figure 5. Results on real-world networks (small scale < 103 nodes) 
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Figure 6. Results on real-world networks (medium scale 103 <nodes< 105)

Figure 7. Results on real-world networks (large-scale nodes > 105)

Number of iteration

0.8240

0.8220

0.8200

0.8180

0.8160

0.8140

0.8120

M
od

ul
ar

ity

 1       2       3      4       5      6       7      8       9      10

n = 2708 (medium) CORA

Louvain
Leiden

Number of iteration

0.6910

0.5910

0.4810

0.3910

0.2910

0.1910

Se
co

nd
s

 1       2       3      4       5      6       7      8       9      10

Louvain
Leiden

n = 2708 (medium) CORA

Number of iteration

0.4310
0.4290
0.4270
0.4250
0.4230
0.4210
0.4190
0.4170

M
od

ul
ar

ity

 1       2       3      4       5      6       7      8       9      10
n = 7115 (medium) Wikipedia

Louvain
Leiden

Number of iteration

5.1670
4.5570
4.1670
3.6670
3.1670
2.6670
2.1670
1.6670
1.1670

Se
co

nd
s

 1       2       3     4       5      6       7      8       9     10

Louvain
Leiden

n = 7115 (medium) Wikipedia

Number of iteration

0.4360
0.4350
0.4340
0.4330
0.4320
0.4310
0.4300
0.4290
0.4280

M
od

ul
ar

ity

 1       2       3       4       5       6       7       8       9      10

n = 36692 (large) 
email Enron

Louvain
Leiden

0.9320

0.9310

0.9300

0.9290

0.9280

0.9270

0.9260

0.9250

M
od

ul
ar

ity

Number of iteration
 1       2       3       4       5       6      7       8       9      10

n = 334863 (large) 
Amazon

Louvain
Leiden

0.7600

0.6600

0.5600

0.4600

0.3600

0.2600

Se
co

nd
s

n = 36692 (large) 
email Enron

Louvain
Leiden

Number of iteration
 1       2       3       4       5       6       7       8       9      10

142.4500

122.4500

102.4500

82.4500

62.4500

42.4500

22.4500

Se
co

nd
s

Number of iteration
 1       2       3       4       5       6       7       8       9      10

n = 334863 (large) Amazon

Louvain
Leiden



Siti Haryanti Hairol Anuar, Zuraida Abal Abas, Norhazwani Md Yunos, Mohd Fariduddin Mukhtar, 
Tedy Setiadi and Abdul Samad Shibghatullah

PREPRINT

well and fast compared to Louvain. The algorithm has no significant difference in the 
networks, with varying types of networks of different sizes. It indicates that the Leiden 
algorithm is more stable in dense networks and is unaffected by the number of nodes in 
the ground truth dataset. 

Statistical Analysis

Statistical analysis was performed to demonstrate that the Leiden algorithm has a higher 
quality function (modularity metric) than the Louvain algorithm. Leiden algorithm takes 
less running time, as measured in seconds. Thus, a hypothesis test of unknown standard 
deviation, σ, and a small sample size (n < 30) was carried out based on the critical value 
technique. The standard test statistic, t, was applied following a t-distribution with a degree 
of freedom (d. f.) equal to n – 1.

The significance level (α) was first identified to produce the total area under the rejection 
region’s distribution curve before determining the d.f. = – 1. IBM SPSS software was used 
to calculate the value of t and derive the conclusion from the results.

The hypothesis tests for null and alternative are denoted by:
# Null hypothesis (H0): There is no difference (equal) for the value in modularity and 
running time between Louvain and Leiden algorithms.
# Alternative hypothesis (H1): There is a difference in the value for the modularity 
and running time between the Louvain and Leiden algorithms.
An independent t-test on a small-size Zachary network of 34 nodes showed no difference 

in modularity value and time performance for the statistically significant Louvain algorithm 
with t (9) = -0.17 and p = 0.123. The value of p = 0.123 was chosen because Levene’s 
test produced a statistically significant p-value, where p < 0.001 and was less than 0.05. 
Otherwise, p = 0.106 would be chosen. p = 0.123 is greater than 0.05, thus failing to reject 
the null hypothesis that there is no difference in modularity value between the Louvain and 
Leiden algorithms for a small-size network (Zachary and LFR 500). 

However, the results of medium- and large-size networks contradict the small-size 
network. This test proved a difference in modularity value and execution time performance 
between Louvain and Leiden algorithms. For the LFR network with 7000 nodes, the test 
generated a statistically significant result with t(18) = -4.064 and p = 0.001. Thus, the null 
hypothesis was rejected due to the statistical difference in value in modularity and running 
time between Louvain and Leiden algorithms.

These results might provide insight into the impact of the number of nodes against the 
modularity metric’s value and how long each community detection technique takes to run. 
The Louvain and Leiden algorithms may be suitable for usage in any network size.
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CONCLUSION

This research focuses on two community detection algorithms, the Louvain and Leiden 
methods, which are based on agglomerative techniques using modularity. A detailed 
summary of the concept and benefit is provided through an experimental comparison. 
This study demonstrates the state-of-the-art algorithm’s step-by-step learning. This study 
presents two-fold contributions. First, it demonstrates that the Leiden method performs 
better in modularity and running time than the Louvain algorithm. Second, it shows the 
application of both synthetic and real networks using these two approaches.

This study exhibits the experimental findings of several different-sized networks 
using Louvain and Leiden algorithms. Both Louvain and Leiden have an optimal value 
of the result, but there is an improvement from Leiden. The Leiden method was found 
to perform better in terms of execution time and the modularity metric. The researchers 
may consider this information for their project. Future research on network analysis 
using interdisciplinary data sciences would benefit from these findings, especially in the 
healthcare field.
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